Введение

Прежде всего условимся, что организаторы действуют честно, ничего не подтасовывают, не пытаются вытащить определённые бочонки специально. И всё это действо действительно происходит в прямом эфире.

Мною был произведён расчёт вероятностей выигрыша одного билета согласно законам её Величества теории вероятностей. Результаты приведены внизу статьи в таблице. Как видим вероятность выигрыша не очень высока, если не сказать больше. Не обращайте внимание на высокие показатели первого тура на последних ходах. Тур к этому времени уже закончится, и данные приведены только теоретически.

Пример расчёта выигрыша джекпота

Для примера рассчитаем вероятность выигрыша джекпота в прошедшем новогоднем тираже Русского Лото №1316, 1 января 2020 года когда был разыгран один миллиард рублей. Для этого используем официальную статистику с сайта Гослото.

Введем исходные события:

  • A (По крайней мере, один из всех купленных билетов выиграет)
  • NA (Все купленные билеты будут без выигрыша).

Будем искать вероятность события NA. Выпишем значения параметров:

  • n= 53 614 853 (количество купленных билетов в тираже, с сайта Гослото)
  • p= 0,000000000000000044 (вероятность выигрыша одного билета, из таблицы ниже, но не в процентах, а в абсолютных величинах)
  • k=0 (окажется выигрышных билетов)

Подставляем в формулу Бернулли Pn(k)=Ckp↑(1p)↑(nk)=Ckp↑q↑(nk) и получаем:

P(NA)= Pn(0) = C (0,53614853) × 0,000000000000000044↑0 × (1- 0,000000000000000044 )↑53614853 = (1- 0,000000000000000044 )↑536148530=0,9999999

Тогда вероятность искомого события A (что был разыгран джекпот), равна:

P(A)=1P(NA)=10,9999999=0,0000001=0,00001%

Исходя из вычисленной вероятности, мне кажется, что джекпоты в Русском Лото выпадают подозрительно часто.


Таблица вероятностей выигрыша одного билета


№ хода Вероятность выигрыша в 1-ом туре, % Вероятность выигрыша в 2-ом туре Вероятность выигрыша в 3-ем туре, % № хода Вероятность выигрыша в 1-ом туре, % Вероятность выигрыша в 2-ом туре, % Вероятность выигрыша в 3-ем туре, %
1 0,00% 0,00% 0,00% 46 17,31378330% 0,00223487% 0,00000000015%
2 0,00% 0,00% 0,00% 47 19,19706081% 0,00328245% 0,00000000041%
3 0,00% 0,00% 0,00% 48 21,21450307% 0,00477446% 0,00000000109%
4 0,00% 0,00% 0,00% 49 23,36730050% 0,00688080% 0,00000000280%
5 0,00001365% 0,00% 0,00% 50 25,65548220% 0,00982964% 0,00000000700%
6 0,00008913% 0,00% 0,00% 51 28,07777276% 0,01392518% 0,00000001700%
7 0,00028669% 0,00% 0,00% 52 30,63145154% 0,01957024% 0,00000004019%
8 0,00076452% 0,00% 0,00% 53 33,31221822% 0,02729481% 0,00000009261%
9 0,00172015% 0,00% 0,00% 54 36,11406889% 0,03779182% 0,00000020838%
10 0,00344028% 0,00% 0,00% 55 39,02918762% 0,05196191% 0,00000045843%
11 0,00630711% 0,00% 0,00% 56 42,04785912% 0,07096900% 0,00000098739%
12 0,01081198% 0,00% 0,00% 57 45,15840838% 0,09630896% 0,00000208449%
13 0,01756897% 0,00% 0,00% 58 48,34717382% 0,12989420% 0,00000431787%
14 0,02732840% 0,00% 0,00% 59 51,59852053% 0,17415701% 0,00000878464%
15 0,04099027% 0,0000000000000044% 0,00% 60 54,89490038% 0,23217562% 0,00001756927%
16 0,05961758% 0,0000000000000699% 0,00% 61 58,21696550% 0,30782672% 0,00003457180%
17 0,08444950% 0,0000000000005939% 0,00% 62 61,54374104% 0,40596940% 0,00006698286%
18 0,11691424% 0,0000000000035637% 0,00% 63 64,85286228% 0,53266550% 0,00012787637%
19 0,15864172% 0,0000000000169274% 0,00% 64 68,12087981% 0,69544200% 0,00024070846%
20 0,21147566% 0,0000000000677095% 0,00% 65 71,32363432% 0,90360140% 0,00044703000%
21 0,27748532% 0,0000000002369831% 0,00% 66 74,43670046% 1,16858605% 0,00081955499%
22 0,35897643% 0,0000000007448040% 0,00% 67 77,43589579% 1,50440183% 0,00148405904%
23 0,45850130% 0,0000000021413114% 0,00% 68 80,29784741% 1,92810579% 0,00265568460%
24 0,57886792% 0,0000000057101638% 0,00% 69 83,00060434% 2,46035975% 0,00469851890%
25 0,72314775% 0,0000000142754095% 0,00% 70 85,52427930% 3,12604840% 0,00822240808%
26 0,89468190% 0,0000000337418770% 0,00% 71 87,85169804% 3,95495383% 0,01423880423%
27 1,09708559% 0,0000000759192233% 0,00% 72 89,96902966% 4,98246896% 0,02440937868%
28 1,33425025% 0,0000001635183271% 0,00% 73 91,86636591% 6,25031734% 0,04143917776%
29 1,61034318% 0,0000003387165346% 0,00% 74 93,53821362% 7,80722483% 0,06969316259%
30 1,92980411% 0,0000006774330687% 1,4855905E-22% 75 94,98386103% 9,70945685% 0,11615527098%
31 2,29733833% 0,00000131% 4,605330770E-21% 76 96,20757795% 12,02108818% 0,19190870858%
32 2,71790586% 0,00000247% 7,3685292E-20% 77 97,21861104% 14,81380694% 0,31440362896%
33 3,19670608% 0,00000453% 8,105382155E-19% 78 98,03094110% 18,16596107% 0,51090589705%
34 3,73915734% 0,00000811% 6,88957483E-18% 79 98,66277860% 22,16042527% 0,82370542586%
35 4,35087087% 0,00001418% 4,822702382E-17% 80 99,13578936% 26,88068528% 1,31792868138%
36 5,03761839% 0,00002432% 2,893621429E-16% 81 99,47406298% 32,40428589% 2,09318084690%
37 5,80529297% 0,00004090% 1,529485612E-15% 82 99,70286433% 38,79244501% 3,30078518164%
38 6,65986221% 0,00006757% 7,26505666E-15% 83 99,84724093% 46,07416622% 5,16915415238%
39 7,60731359% 0,00010980% 3,148191219E-14% 84 99,93059532% 54,22254340% 8,04090645927%
40 8,65359107% 0,00017567% 1,259276487E-13% 85 100,00% 63,12008723% 12,42685543705%
41 9,80452281% 0,00027702% 0,00000000000047% 86 100,00% 72,50873970% 19,08409942118%
42 11,06573948% 0,00043092% 0,00000000000164% 87 100,00% 81,91868339% 29,12836227443%
43 12,44258305% 0,00066178% 0,00000000000543% 88 100,00% 90,56796981% 44,19475655431%
44 13,94000601% 0,00100407% 0,00000000001708% 89 100,00% 100,00% 66,66666666667%
45 15,56246130% 0,00150611% 0,00000000005123% 90 100,00% 100,00% 100,00%